Process Modelling and Simulation
with Application to the MATLAB/Simulink Environment

František Gazdoš
(gazdos@fai.utb.cz)
COUNTRIES & REGIONS...

Italy / Sardinia / Cagliari
(60M / 1.6M / 154k)

Czech Republic / Zlín Region / Zlín
(10.5M / 600k / 75k)
Universities:

Università di Cagliari
(more than 30,000 students)
- Faculty of Biology and Pharmacy
- Faculty of Engineering and Architecture
- Faculty of Medicine and Surgery
- Faculty of Sciences
- Faculty of Economic Sciences, Law and Political Sciences
- Faculty of Humanities

Tomas Bata University in Zlín
(more than 10,000 students)
- Faculty of Technology
- Faculty of Management and Economics
- Faculty of Multimedia Communications
- Faculty of Applied Informatics
- Faculty of Humanities
- Faculty of Logistics and Crisis Management

Erasmus lectures at Università di Cagliari in November 2016 / František Gazdoš
Faculty of Applied Informatics

Studies:
- Bachelor’s Degree studies
- Follow-on Master’s Degree studies
- Ph.D. Degree studies
- A number of courses in English for International students!

R&D in:
- Applied Informatics
- Security Technologies
- Automatic Control
- Measurement and Instrumentation

🤩 You are Welcome! 😊

Erasmus lectures at Università di Cagliari in November 2016 / František Gazdoš
CONTENTS

1 Motivation – Why?
2 Approaches – How?
3 Illustrative examples
 - room heating process
 - mass-spring-damper system
 - tubular heat exchanger
 - ...
4 Introduction to MATLAB & Simulink
 - basics of MATLAB programming (displaying process static characteristics)
 - basics of Simulink (solving differential equations – process dynamics responses)
 - building Simulink blocks, masking...
5 Further - What else?
1. **MOTIVATION – WHY?**

- 😊 it saves time!
 (slow real-time experiments…)

- 😊 it saves costs!
 (expensive real-time experiments, repairs…)

- 😊 it saves health & lives!
 (hazardous real-time experiments, dangerous conditions…)

Erasmus lectures at Università di Cagliari in November 2016 / František Gazdoš
2. **APPROACHES – HOW?**

- **ANALYTICAL** approach:
 - material & energy balances
 - mathematical description of physical, chemical, biological sub-processes…

 analytical (internal, state-space) model

 - structure & behaviour model
 (model variables & parameters correspond to real process variables & parameters)

 - valid in wide range of input variables and modes
 (often not allowable under real conditions…)

 - knowledge of the process + mathematics, physics, chemistry, biology…

 - design stage of a new technology
 (real plant still does not exists…)
2. **APPROACHES – HOW?**

- **EMPIRICAL approach:**

 - real-time measurements (input → output)
 - measured data processing & evaluation
 (model structure choice, identification, …)

 experimental (external, input-output) model

 - only behaviour model
 (model variables & parameters **DO NOT** correspond to real process variables & parameters)
 - process must already exist
 (real-time measurements)

 - usually simpler model
 - often more accurate model
 (for the measured range of input signals!)
 - usually time-demanding…

Erasmus lectures at Università di Cagliari in November 2016 / František Gazdoš
2. **APPROACHES – HOW?**

COMBINATION
Analytical + empirical
(basic model structure by an analysis + parameters via experiments…)

.mathematical model = SIMPLIFIED reality
(some sub-processes unknown, some neglected…)

...what to model...?

TRADE-OFF
(model accuracy x model complexity)

...how accurate model is needed...?

...what to neglect...?

...how complex the model can be...?
2. **APPROACHES – HOW?**

- schematic picture
- definition of variables (input, output, state)
- simplifying assumptions
- energy / material balances
- steady-states analysis
- choice / estimate / determination of model parameters
- process variables limits, model validity
- choice of initial / boundary conditions & operating point(s) for simulation
- implementation of the model
- simulation experiments
- experiments evaluation
- model verification / corrections…
- …
3. ILLUSTRATIVE EXAMPLES

ROOM heating process:

- schematic picture:

- definition of variables:

 inputs: - heat power $P(t)$ in [W]

 - outdoor temperature $T_c(t)$ in [K]

 states: - room temperature $T(t)$ in [K]

 outputs: - room temperature $T(t)$ in [K]

- simplifying assumptions:

 - ideal air mixing

 - constant process parameters
 (air volume V, density ρ, heat capacity c_p, overall heat transfer coefficient α, heat transfer surface area A, …)

 - heat accumulation in the walls neglected

 - …
3. ILLUSTRATIVE EXAMPLES

- **ROOM heating process:**

 - **Energy / material balances:**
 - \(P(t) = \alpha A \left(T(t) - T_C(t) \right) + \frac{d}{dt} \left[V \rho c_p T(t) \right] \)

 (heat loss due to exchange of air and heat conduction through the walls)

 - **Steady-states analysis:**

 \(\frac{d}{dt} = 0 \Rightarrow P^s = \alpha A \left(T^s - T_C^s \right) \)

\[
\begin{align*}
\frac{dT(t)}{dt} &= \frac{1}{V \rho c_p} P(t) - \frac{\alpha A}{V \rho c_p} \left[T(t) - T_C(t) \right]; \quad T(0) = T^s \\
T^s &= T_C^s + \frac{P^s}{\alpha A} \\
\alpha &= \frac{P^s}{A(T^s - T_C^s)}
\end{align*}
\]
3. ILLUSTRATIVE EXAMPLES

- ROOM heating process:

-choice / estimate / determination of model parameters:

 - \(A = 55 \, [m^2], \, V = 70 \, [m^3] \) …measured
 - \(\alpha = 1.82 \, [W/(m^2K)] \) …estimated (steady-state model for \(P^s = 2000 \, [W] \) and \(\Delta T^s = 20 \, [K] \))
 - \(\rho = 1.205 \, [kg/m^3], \, c_p = 1005 \, [J/(kgK)] \) …taken from the literature (for \(T = 20 \, [^°C] \))

-process variables limits, model validity

 - no singular states…
 - model valid in common (reasonable chosen) conditions…

-choice of initial / boundary conditions & operating point(s) for simulation

 - \(T(0) = 25 \, [^°C] = 298.15 \, [K] \)
 - \(P = 2000 \, [W] \)
 - \(Tc = 5 \, [^°C] = 278.15 \, [K] \)
3. **ILLUSTRATIVE EXAMPLES**

- **ROOM heating process:**
 - implementation of the model (steady-state model, dynamic model…)
 - simulation experiments
 - experiments evaluation
 - model verification / corrections…

 $T^s = T_C^s + \frac{P^s}{\alpha A}$

 $\frac{dT(t)}{dt} = \frac{1}{V \rho c_p} P(t) - \frac{\alpha A}{V \rho c_p} [T(t) - T_C(t)]; \quad T(0) = T^s$

- linear 1st order system,
- with lumped parameters,
- continuous-time,
- deterministic,
- multivariable (MIMO),
- time-invariant…
4. **INTRODUCTION TO MATLAB & SIMULINK**

- basics of MATLAB programming (displaying process static characteristics)
- basics of Simulink (solving differential equations – process dynamics responses)
- building Simulink blocks, masking...
ILLUSTRATIVE EXAMPLES

Mass-spring-damper system:
(simplified car shock absorber)

schematic picture:

definition of variables:

inputs: - forcing function $F(t)$ in [N]

states: - position $y(t)$ in [m]
 - velocity $v(t) = \frac{dy(t)}{dt}$ in [m/s]

outputs: - position $y(t)$ in [m]

simplifying assumptions:

- **ideal spring**
- **well lubricated, sliding surface** (wall friction modelled as viscous damper)
- constant process parameters (spring constant k, friction constant b, mass of load m, ...)
- …
ILLUSTRATIVE EXAMPLES

- **Mass-spring-damper system:**

 ...performing a force balance:
 (& utilizing Newton’s 2nd law of motion...)

 \[\Sigma \text{forces} = ma(t) = m \frac{d^2 y(t)}{dt^2} \]

 \[F(t) - F_k(t) - F_b(t) = m \frac{d^2 y(t)}{dt^2} \]

 spring force \quad friction force (viscous damper)

 \[[N] + \left[\frac{N}{s} \right] m \cdot \left[\frac{N}{m} \right] = [N] \]

 \[m y''(t) + b y'(t) + k y(t) = F(t) ; \quad y(0) = \ldots ; y'(0) = \ldots \]

 steady-states analysis:

 \[\frac{d}{dt} = 0 \]

 \[k y^S = F^S \]

 \[y^S = \frac{1}{k} F^S \]

 \[k = \frac{F^S}{y^S} \]
ILLUSTRATIVE EXAMPLES

Mass-spring-damper system:

- choice / estimate / determination of model parameters:

 \[
 m = 500 \text{ [kg]} \quad \text{load of mass (measured)}
 \]

 \[
 k = 2000 \text{ [N/m]} \quad \text{spring constant (taken from the literature)}
 \]

 \[
 b = 400 \text{ [N/(m/s)]} \quad \text{friction constant / viscous damping coefficient (taken from the literature)}
 \]

- process variables limits, model validity

 - no singular states…

 - model valid in common (reasonable chosen) conditions…

- choice of initial / boundary conditions & operating point(s) for simulation

 \[
 y(0) = dy(0)/dt = 0 \text{ [m]}
 \]

 \[
 F = 50 \text{ [N]}
 \]
ILLUSTRATIVE EXAMPLES

- **Mass-spring-damper** system:
 - implementation of the model (steady-state model, dynamic model...)
 - simulation experiments
 - experiments evaluation
 - model verification / corrections...

\[
y^s = \frac{1}{k} F^s
\]

\[
my''(t) + by'(t) + ky(t) = F(t); \quad y(0) = y'(0) = 0
\]

- linear 2nd order system,
- with lumped parameters,
- continuous-time,
- deterministic,
- single-input single-output (SISO),
- time-invariant...
ILLUSTRATIVE EXAMPLES

- **Mass-spring-damper** system:

 - **Transfer function** description (using the Laplace transform):

 \[
 m s^2 Y(s) + b s Y(s) + k Y(s) = F(s)
 \]
 \[
 Y(s) \left(m s^2 + b s + k \right) = F(s)
 \]
 \[
 Y(s) = \frac{1}{m s^2 + b s + k} = G(s)
 \]
 \[
 \frac{Y(s)}{F(s)} = \frac{1}{m s^2 + b s + k} = G(s)
 \]

 - **Gain** “K”
 - **Damping coefficient** “ξ”
 - **Time-constant** “T”
 - **Natural frequency**

 - **Steady-state gain**:
 \[
 K = \frac{1}{k} = \frac{1}{2000} = 0.0005 \text{ [N/m]}
 \]

 - **Time-constant** (natural period / inverse natural frequency):
 \[
 T = \frac{\sqrt{m}}{\sqrt{\frac{k}{2000}}} = \sqrt{\frac{500}{2000}} = 0.5 \text{ [s]}
 \]

 - **Damping coefficient**:
 \[
 \xi = \frac{b}{\sqrt{4km}} = \frac{400}{\sqrt{4 \times 10^6}} = 0.2
 \]
ILLUSTRATIVE EXAMPLES

- **Mass-spring-damper system:**

 - **state-space description:**
 - Define states as: \(x_1(t) = y(t) \) ... and input as: \(u(t) = F(t) \) ... then output will be: \(y(t) = x_1(t) \)
 - \(x_2(t) = \frac{dy(t)}{dt} \)

 - Then it holds: \(\frac{dx_1(t)}{dt} = \frac{dy(t)}{dt} = x_2(t) \) ... and the 2\(^{nd}\) order model can be rewritten into two 1\(^{st}\) order DE:
 - \(\frac{dx_1(t)}{dt} = x_2(t) \)
 - \(\frac{dx_2(t)}{dt} = -\frac{k}{m} x_1(t) - \frac{b}{m} x_2(t) + \frac{1}{m} u(t) \)

 - In the matrix form:
 \[
 \begin{bmatrix}
 x_1'(t) \\
 x_2'(t)
 \end{bmatrix} =
 \begin{bmatrix}
 0 & 1 \\
 -\frac{k}{m} & -\frac{b}{m}
 \end{bmatrix}
 \begin{bmatrix}
 x_1(t) \\
 x_2(t)
 \end{bmatrix}
 +
 \begin{bmatrix}
 0 \\
 \frac{1}{m}
 \end{bmatrix}
 u(t)
 \]
 \[
 y(t) =
 \begin{bmatrix}
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 x_1(t) \\
 x_2(t)
 \end{bmatrix} +
 \begin{bmatrix}
 0
 \end{bmatrix}
 u(t)
 \]
ILLUSTRATIVE EXAMPLES

- **Mass-spring-damper** system:

 - **state-space** description:

 - in the compact form: \[
 \frac{dx(t)}{dt} = Ax(t) + Bu(t) \]

 \[
y(t) = Cx(t) + Du(t)
 \]

 - and initial conditions: \[
 x(0) = [x_1(0) \quad x_2(0)]^T = [0 \quad 0]^T
 \]

 - ...with matrices as:

 \[
 \begin{bmatrix}
 A & B \\
 C & D
 \end{bmatrix} = \begin{bmatrix}
 0 & 1 & 0 \\
 -\frac{k}{m} & -\frac{b}{m} & 1 \\
 \frac{1}{m} & 0 & 0
 \end{bmatrix}
 \]

 ...easy simulation in the MATLAB/Simulink using the "Transfer Fcn" or "State-Space" blocks... 😊
5. **FURTHER... for control engineers...**

- linearization in a chosen operating point (for nonlinear models...)
- deviation variables & proper scaling...
- system analysis...
 - state-space / transfer function description...?
 - controllability & observability...?
 - system degree & type (P/I/D)...?
 - system gain & time-constants...?
 - (un)stable...?
 - (a)periodic response...?
 - (non-)minimum-phase behaviour...?
 - with(out) time-delay...?
- linear / nonlinear...?
- with lumped / distributed parameters...?
- continuous / discrete-time...?
- deterministic / stochastic...?
- single-variable / multi-variable...?
- time-invariant / variant...?
5. **FURTHER…for self-study…**

Thank you for your attention! 😊

Erasmus lectures at Università di Cagliari in November 2016 / František Gazdoš