A new protocol for the decentralized diagnosis of labeled Petri nets

Maria Paola Cabasino, Alessandro Giua, Andrea Paoli, Carla Seatzu

Abstract

In this paper we deal with the problem of failure diagnosis of discrete event systems with decentralized information. The decentralized architecture that we use is composed by a set of sites communicating their diagnosis information with a coordinator that is responsible of detecting the occurrence of failures in the system. In particular, first we present a protocol that defines the communication rules between the sites and the coordinator. Secondly, we prove that this protocol does not produce false alarms. Moreover, we give sufficient conditions for diagnosability based on the notion of failure ambiguous strings. Finally, we compare the protocol here presented with two other protocols that we presented in a previous work.

Published as:

This work has been partially supported by the European Community’s Seventh Framework Programme under project DISC (Grant Agreement n. INFSO-ICT-224498).

M.P. Cabasino, A. Giua and C. Seatzu and are with the Department of Electrical and Electronic Engineering, University of Cagliari, Piazza D’Armi, 09123 Cagliari, Italy {seatzu,cabasino@diee.unica.it}.

A. Paoli is with the Center for Research on Complex Automated Systems - Department of Electronic, Computer Science and Systems, University of Bologna, Via Risorgimento, 2, 40136 Bologna, Italy {andrea.paoli@unibo.it}.
I. Introduction

The problem of failure detection has received a lot of attention in industrial systems in the past few decades. Solving a problem of diagnosis means that we associate to each observed string of events a diagnosis state, such as “normal” or “faulty” or “uncertain”. In the literature many contributions have been presented for discrete event systems in the centralized framework ([1]; [2]; [3]; [4]). Due to the intrinsic distributed nature of real systems, distributed diagnosis techniques, that take advantage of the natural decompositions of a modular system, have been proposed both in the automata framework ([5]; [6]; [7]) and in the Petri net (PN) framework ([8]; [9]; [10]; [11]).

In particular, in [8] Benveniste et al. solve a problem of alarm supervision in telecommunication networks. They use an unfolding approach and restrict their attention to safe PNs. Genc and Lafortune in [10] propose a diagnoser on the basis of a modular approach that performs the diagnosis of faults in each module. In [9] Jiroveanu and Boel propose an algorithm for the model based design of a distributed protocol for fault detection and diagnosis for very large systems.

In [11] we presented two different protocols for decentralized diagnosis of labeled Petri nets based on a particular architecture, that is the same we consider in this paper. In particular, we assume that the system can be observed by different local sites that have the perfect knowledge of the net system, but observe its evolution with different masks. On the basis of its own observations, each site performs diagnosis locally.

This paper takes inspiration from the work of Debouk et al. [5] who studied protocols in the case of automata and in the case of full plant model available at each sensor and different filters. In more detail, here we present a third protocol that defines the communication rules between the local sites and the coordinator. It differs from the ones defined in [11] because it leads to more accurate diagnosis. The price to pay for this improvement in the performances is that a larger amount of information should be exchanged between the sites and the coordinator. We prove that this protocol, as well as those introduced in [11], never produces false alarm. Furthermore, we analyze diagnosability. To this aim, we recall the definition of failure ambiguous strings, and show that the absence of such kind of strings of unbounded length is only a sufficient condition for the diagnosability of a Petri net system using Protocol 3.
We conclude this section observing that both the problem formulation and the objectives considered in [8] are significantly different from those in this paper. More strict analogies exist between our approach and the approaches in [10] and [9]. However, also in this case there exists a main difference that can be summarized as follows. In these works the authors assume the PN divided into different sub-modules or sites: each site is modeled by a different subset of places and transitions and can interact with the other sites via a restricted interface consisting in bordered places [10] or guard transitions [9]. On the contrary, in our approach each site has the perfect knowledge of the whole PN system but observes the system with a different observation mask and no special interfaces are required.

II. BACKGROUND ON LABELED PETRI NETS

A Place/Transition net (P/T net) is a structure $N = (P, T, Pre, Post)$, where P is the set of m places, T is the set of n transitions, $Pre : P \times T \rightarrow N$ and $Post : P \times T \rightarrow N$ are the pre and post incidence functions that specify the arcs. The function $C = Post - Pre$ is called incidence matrix.

A marking is a vector $M : P \rightarrow \mathbb{N}$ that assigns to each place a nonnegative integer number of tokens; the marking of a place p is denoted with $M(p)$. A net system $\langle N, M_0 \rangle$ is a net N with initial marking M_0.

A transition t is enabled at M iff $M \geq Pre(\cdot, t)$ and may fire yielding the marking $M' = M + C(\cdot, t)$. The notation $M[\sigma]$ is used to denote that the sequence of transitions $\sigma = t_1 \ldots t_k$ is enabled at M; moreover we write $M[\sigma]M'$ to denote the fact that the firing of σ from M yields to M'. Given a sequence $\sigma \in T^*$ we write $t \in \sigma$ to denote that a transition t is contained in σ.

The set of all sequences that are enabled at the initial marking M_0 is denoted with $L(N, M_0)$. Given a sequence $\sigma \in T^*$, we call $\pi : T^* \rightarrow \mathbb{N}^n$ the function that associates to σ a vector $y \in \mathbb{N}^n$, named firing vector, such that $y(t) = k$ if the transition t is contained k times in σ.

A marking M is said to be reachable in $\langle N, M_0 \rangle$ iff there exists a firing sequence σ such that $M[\sigma]M$. The set of all markings reachable from M_0 defines the reachability set of $\langle N, M_0 \rangle$ and is denoted with $R(N, M_0)$. Finally we define $PR(N, M_0)$ the potentially reachable set, i.e., the set of all markings $M \in \mathbb{N}^m$ for which there exists a vector $y \in \mathbb{N}^n$ that satisfies the state equation $M = M_0 + C \cdot y$. It holds that $R(N, M_0) \subseteq PR(N, M_0)$.
A PN having no directed circuits is called acyclic. For such nets if the vector \(y \in \mathbb{N}^n \) satisfies the equation \(M_0 + C \cdot y \geq 0 \), there exists a firing sequence \(\sigma \) firable from \(M_0 \) and such that the firing vector associated with \(\sigma \) is equal to \(y \). Moreover for acyclic nets \(R(N, M_0) = PR(N, M_0) \).

A labeling function \(\mathcal{L} : T \to L \cup \{ \varepsilon \} \) assigns to each transition a symbol from a given alphabet \(L \) or the empty string \(\varepsilon \). We denote as \(\mathcal{L}^{-1} \) the inverse operator of \(\mathcal{L} \). The set of transitions sharing the same label \(l \) is denoted as \(T_l \). Transitions whose label is \(\varepsilon \) are called silent and are denoted by the set \(T_u \). The set \(T_o = T \setminus T_u \) is the set of observable transitions, i.e., when an observable transition fires we observe its label. We denote as \(C_u(C_o) \) the restriction of the incidence matrix to \(T_u (T_o) \). We define the projection over \(T_o \) (projection over \(T_u \)) \(P_o : T^* \to T_o^* \ (P_u : T^* \to T_u^*) \) as: (i) \(P_o(\varepsilon) = \varepsilon \ (P_u(\varepsilon) = \varepsilon) \); (ii) for all \(\sigma \in T^* \) and \(t \in T \), \(P_o(\sigma t) = P_o(\sigma) t \) if \(t \in T_o \) \((P_u(\sigma t) = P_u(\sigma) t \) if \(t \in T_o \), and \(P_o(\sigma t) = P_o(\sigma) \ (P_u(\sigma t) = P_u(\sigma)) \) otherwise.

We denote as \(w = \mathcal{L}(\sigma) \) the word of events associated to the sequence \(\sigma \). We define \(S(w) = \{ \sigma \in L(N, M_0) \mid \mathcal{L}(\sigma) = w \} \) the set of sequences consistent with \(w \in L^* \). In plain words, given an observation \(w \), \(S(w) \) is the set of sequences that may have fired. Finally, given a net \(N = (P, T, Pre, Post) \) and a subset \(T' \subseteq T \) of its transitions, we define the \(T' \)-induced subnet of \(N \) as the new net \(N' = (P, T', Pre', Post') \), where \(Pre' \) and \(Post' \) are the restrictions of \(Pre \) and \(Post \) to \(T' \), i.e., \(N' \) is the net obtained from \(N \) removing all transitions in \(T \setminus T' \). We write that \(N' \prec_T N \).

III. Problem Statement

We model anomalous or faulty behavior using the set of silent transitions \(T_f \subseteq T_u \). The set \(T_f \) includes all fault transitions and is further decomposed into \(r \) different subsets \(T_{fi} \), where \(i \in \mathcal{F} = \{1, \ldots, r\} \), that model different fault classes. The transition set \(T_{reg} = T_u \setminus T_f \) represents the set of unobservable, but regular, transitions.

The problem of fault diagnosis can be seen as the problem of detecting the firing of any fault transition in \(T_f \), using the knowledge on the firing of observable transitions, or the knowledge on their labels in the case of labeled Petri nets. In this work we explore the possibility of performing diagnosis using a decentralized architecture as depicted in Fig. 1. The system is monitored by a set \(\mathcal{J} = \{1, \ldots, \nu\} \) of sites. Each site has a complete knowledge of the net structure and of the initial marking, but observes the evolution of the system using its own observation mask. Obviously, different sites have different observation masks. In particular, for each site \(j \in \mathcal{J} \),
the set of locally observable transitions is the set $T_{o,j} \subseteq T_o$. Any centrally observable transition is observed by at least one site, i.e., $\bigcup_{j \in J} T_{o,j} = T_o$. The set of locally unobservable transitions is defined as

$$T_{u,j} = T_{\text{reg}} \cup T_f \cup (T_o \setminus T_{o,j}).$$ \hfill (1)

We denote as $L_j \subseteq L$ ($j \in J$) the alphabet of the j-th site, i.e., the set of labels observable by the j-th site. Moreover, we denote as

$$\mathcal{L}_j : T \rightarrow L_j \cup \{\varepsilon\}$$ \hfill (2)

the labeling function associated to the j-th site and as

$$\bar{\mathcal{L}} : T \rightarrow L \cup \{\varepsilon\}$$ \hfill (3)

the labeling function associated to the centralized system. Finally, $w_j = \mathcal{L}_j(\sigma)$ denotes the word of events in L_j associated to the sequence σ by the j-th site.

As shown in Fig. 1, on the basis of its own observation $w_j = \mathcal{L}_j(\sigma)$ ($j \in J$) each site performs a local diagnosis. In particular, for each fault class $i \in \mathcal{F}$ it computes a different diagnosis state $\Delta_{j,i}$ (see Definition 4.1) and depending on this, it exchanges information with a coordinator C according to a given protocol\footnote{For the sake of simplicity in Fig. 1 we represented the diagnosis states in a vectorial form, thus Δ_j,i denotes the ith component of Δ_j. The same notation has been used for the diagnosis state computed by the Coordinator C.}. The coordinator fuses the information coming from the different
sites according to the considered protocol and infers on the occurrence of faults. More precisely, for each fault class $i \in \mathcal{F}$ it computes a diagnosis state $\bar{\Delta}_i$.

In this paper we explore the decentralized architecture under the following assumptions.

(A1) The same label $l \in L$ can be associated to more than one transition, but if a site observes a transition labeled l, then it observes any transition whose label is l, namely, $\not\exists t, t' \text{ such that } \bar{L}(t) = \bar{L}(t') \text{ and } t \in T_{o,j}, \text{ while } t' \notin T_{o,j}$.

(A2) The $T_{u,j}$-induced subnet $N_{u,j}$ is acyclic for any $j \in \mathcal{J}$.

(A3) The coordinator C knows which transitions can be observed by each site, i.e., it knows the sets $T_{o,j}$ for any $j \in \mathcal{J}$.

(A4) There is reliable communication between the local sites and the coordinator, i.e., all messages sent from a local site are received by the coordinator, and vice versa, correctly and in order.

(A5) The system does not enter a deadlock after the firing of any fault transition.

In this paper we also investigate the issue of diagnosability.

Definition 3.1: Let us consider a Petri net system $\langle N, M_0 \rangle$ having no deadlock after the occurrence of transition $t_f \in T^i_j$, for all $i \in \mathcal{F}$. Assume that diagnosis is performed according to a given approach (either centralized or decentralized). We say that $\langle N, M_0 \rangle$ is diagnosable with respect to (wrt) the fault class T^i_j and wrt a given diagnosis approach iff the occurrence of some fault in T^i_j is unambiguously detected using the specified diagnosis approach after a finite number of observable transition firings.

Definition 3.2: A Petri net system $\langle N, M_0 \rangle$ is diagnosable wrt a given diagnosis approach if it is diagnosable wrt that approach for all fault classes T^i_j, $i \in \mathcal{F}$.

Note that in the centralized framework, inspired by the definition of diagnosability for languages introduced in [12], Definition 3.1 can alternatively be formulated as follows.

Definition 3.3: A Petri net system $\langle N, M_0 \rangle$ having no deadlock after the occurrence of transition $t_f \in T^i_j$, for $i \in \mathcal{F}$, is diagnosable wrt the fault class T^i_j if there do not exist two firing sequences σ_1 and $\sigma_2 \in T^*$ satisfying the following conditions:

- $\bar{L}(\sigma_\infty) = \bar{L}(\sigma_\varepsilon)$,
- $\sigma_1 \in (T \setminus T^i_j)^*$,
- \exists at least one $t_f \in T^i_j$ such that $t_f \in \sigma_2$,
- σ_2 is of “arbitrary length” (see [12]) after fault $t_f \in T^i_j$.

IV. BASIC DEFINITIONS AND RESULTS ON CENTRALIZED DIAGNOSIS

In this section we briefly recall the diagnosis procedure we defined in [4] in the centralized framework, that is used by the different sites to perform diagnosis locally. As in the previous section, $T = T_o \cup T_u$ where $T_u = T_{reg} \cup T_f$, and the observations coincide with the labels associated to transitions in T_o. In particular, we first provide some preliminary definitions.

- Given a word $w \in L^*$, let $\sigma_o \in T_o^*$ be a sequence of observable transitions such that $\bar{L}(\sigma_i) = \equiv$. We call justification of w a sequence σ_u of unobservable transitions interleaved with σ_o whose firing enables σ_o and whose firing vector is minimal, i.e., no other such sequence σ'_u exists with $\pi(\sigma'_u) \preceq \pi(\sigma_u)$.

Since in general σ_o is not unique and more than one σ_u may be associated to each σ_o, then the set of justifications of w is not a singleton.

- We denote as $Y_{min}(M_0, w)$ the set of firing vectors relative to justifications of w. The generic element $y \in Y_{min}(M_0, w)$ is called j-vector.

- Finally, we denote as

$$\hat{J}(w) = \{ (\sigma_o, \sigma_u), \sigma_o \in T_o^*, \bar{L}(\sigma_i) = \equiv, \sigma_u \in T_u^* | $$

$$[\exists \sigma \in S(w) : \sigma_o = P_o(\sigma), \sigma_u = P_u(\sigma)] \wedge $$

$$[\emptyset \sigma' \in S(w) : \sigma_o = P_o(\sigma'), \sigma'_u = P_u(\sigma') \wedge $$

$$\pi(\sigma'_u) \preceq \pi(\sigma_u)] \}$$

the set of couples (sequence $\sigma_o \in T_o^*$ with $\bar{L}(\sigma_i) = \equiv$ - corresponding justification of w).

Definition 4.1: A diagnoser is a function $\Delta : L^* \times \{T_1^f, T_2^f, \ldots, T_r^f\} \rightarrow \{0, 1, 2, 3\}$ that associates to each observation w and to each fault class T_i^f, $i \in F$, a diagnosis state.

- $\Delta(w, T_i^f) = 0$ if for all $\sigma \in S(w)$ and for all $t_f \in T_i^f$ it holds $t_f \notin \sigma$. In such a case the ith fault cannot have occurred, because none of the firing sequences consistent with the observation contains fault transitions in T_i^f.

- $\Delta(w, T_i^f) = 1$ if:

 (i) there exist $\sigma \in S(w)$ and $t_f \in T_i^f$ such that $t_f \in \sigma$ but

 (ii) for all $(\sigma_o, \sigma_u) \in \hat{J}(w)$ and for all $t_f \in T_i^f$ it holds that $t_f \notin \sigma_u$.

In such a case a fault transition of the ith class may have occurred but is not contained in any justification of w.
• \(\Delta(w, T_i^f) = 2 \) if there exist \((\sigma_o, \sigma_u), (\sigma'_o, \sigma'_u) \in \hat{J}(w)\) such that

 (i) there exists \(t_f \in T_i^f \) such that \(t_f \in \sigma_u; \)

 (ii) for all \(t_f \in T_i^f, t_f \not\in \sigma'_u. \)

In such a case a fault transition in the \(i \)-th class is contained in one (but not in all) justification of \(w. \)

• \(\Delta(w, T_i^f) = 3 \) if for all \(\sigma \in S(w) \) there exists \(t_f \in T_i^f \) such that \(t_f \in \sigma. \) In such a case the \(i \)-th fault must have occurred, because all firable sequences consistent with the observation contain at least one fault transition in the \(i \)-th class.

A systematic procedure has been given in [4] to compute the above diagnosis states that is not recalled here for the sake of brevity.

V. DECENTRALIZED DIAGNOSIS USING PROTOCOL 3

Protocol 3 is based on the idea that a site communicates its diagnosis state if and only if it is equal either to 3 or to 2, otherwise it remains silent. Each site transmits not only the diagnosis state but also its set of j-vectors. On the basis of this information, the coordinator polls a certain number of sites and makes a refinement of the set of j-vectors. Such a refinement is then used by the local sites to recompute their diagnosis states for all fault classes. This in general leads to an improvement of the performance of the decentralized diagnoser.

To define in a clear and concise way such a protocol, let us introduce some preliminary definitions.

• Let \(J_l = \{ k \in J \mid l \in L_k \} \) be the set of sites that are capable of observing label \(l. \)

• Given a site \(j \) and a set of j-vectors \(Y_j = Y_{\min}(M_0, w_j), \)

\[
I(j, Y_j) = \{ l \in L \mid \exists y \in Y_j \land \exists t \in T \setminus T_{o,j} : y(t) > 0 \land \bar{L}(t) = l \}
\]

is the set of labels relative to transitions that appear in at least a j-vector of the \(j \)-th module.

• Let \(|w_k|_l \) be the number of occurrences of label \(l \) in the observation \(w_k. \)

• Given an observation \(w_k \) from site \(k \), a label \(l \), and a j-vector \(y, \)

\[
\beta_k(w_k, l, y) = |w_k|_l - \sum_{t : \bar{L}(t) = l} y(t)
\]

is the difference between the number of times the site \(k \) has observed \(l \) and the number of times a transition labeled \(l \) appears in \(y. \)
Based on the above definitions, the main steps of the decentralized procedure based on Protocol 3 can be summarized as follows.

1) The diagnosis state $\bar{\Delta}_i$ of the coordinator relative to each T^i_f is initially undefined.

2) If $\Delta_{j,i} = \Delta(w_j, T^i_f) = \{2, 3\}$ for some $j \in J$ and some $i \in F$, then the j-th site transmits to the coordinator its diagnosis state together with its set of j-vectors.

3) For any label $l \in \mathcal{I}(j, Y_j)$ the coordinator polls any site $k \in J \setminus \{j\}$ (if $J \setminus \{j\}$ is not empty).

4) The k-th site transmits to the coordinator the value of $|w_k|_l$.

5) If $\beta_k(w_k, l, y) < 0$ for a vector $y \in Y_j$, then the coordinator removes the vector y from the set of j-vectors Y_j relative to the j-th site.

6) As a result of this process of refinement, the coordinator computes a new set Y'_j that is communicated to the j-th site.

7) The j-th site recomputes its diagnosis states according to the new set Y'_j and if some of them are equal to 3, communicates it to the coordinator, otherwise it keeps silent.

The refinement of Y_j is based on the following very simple fact. If Y_j contains a j-vector that assumes a certain number of occurrences of l, but this number is not consistent with the observation of a site that is capable of observing l, then for sure such a justification is unfeasible. Therefore, if $\beta_k(w_k, l, y) < 0$ for a certain label l and a certain j-vector $y \in Y_j$, then y should be removed from Y_j. In fact, this means that the justification relative to j-vector y assumes a number of occurrences of l that is greater than the real number, that is perfectly known by the k-th site. On the contrary, if $\beta_k(w_k, l, y) \geq 0$ it means that the j-vector y is compatible with the observation of the k-th site. In particular, if $\beta_k(w_k, l, y) = 0$ it means that the justification contains all the occurrences of label l. The case of $\beta_k(w_k, l, y) > 0$ is relative to a possible situation as well. It means that the justification relative to y does not contain all the occurrences of l; thus the rest of transitions labeled l, up to the value $|w_k|_l$, have fired after the justification and the observation w_j.

Example 5.1: Let us consider the Petri net in Fig. 2 where $T_u = T_f = \{\varepsilon_7\}$. The net is locally diagnosed by two sites whose set of observable transitions is $T_{o,1} = \{t_1, t_2, t_3, t_6\}$ and $T_{o,2} = \{t_4, t_5, t_6\}$, respectively. This implies that $L_1 = \{a, c\}$, $L_2 = \{b, c\}$, $J_a = \{1\}$, $J_b = \{2\}$ and $J_c = \{1, 2\}$. Let us assume that the sequence $\sigma = \varepsilon_7t_1t_4$ fires, thus $w_1 = a$ and $w_2 = b$.

The set of j-vectors for the first site is $Y_{min}(M_0, w_1) = Y_1 = \{y'_1, y''_1\}$, where $y'_1 = \bar{0}$ and
\[y_1'' = \pi(\varepsilon_7), \text{ while for the second site is } Y_{\text{min}}(M_0, w_2) = Y_2 = \{y_2', y_2''\}, \] where \(y_2' = \pi(\varepsilon t_1) \) and \(y_2'' = \pi(t_2t_3) \). Hence both sites have a diagnosis state equal to 2.

Both the sites communicate their diagnosis state and their set of j-vectors to the coordinator. Now, \(I(1, Y_1) = \emptyset \) but \(I(2, Y_2) = \{a\} \) and \(J_a = \{1\} \). Thus the coordinator polls site 1 to know the number of label \(a \) it has observed. Since \(|w_1|_a = 1 \), then \(\beta_1(w_1, a, y_2') = 1 - 1 = 0 \) and \(\beta_1(w_1, a, y_2'') = 1 - 2 < 0 \). This means that the j-vector \(y_2'' = \pi(t_2t_3) \) can be confuted and removed from \(Y_2 \). The redefined set of j-vectors for site 2 is \(Y'_{\text{min}}(M_0, w_2) = \{y_2'\} \) and it is communicated by the coordinator to the site 2. Site 2 recomputes its diagnosis state that is now equal to 3. Thus \(\Delta_2 = 3 \) is communicated to the coordinator and consequently \(\bar{\Delta} = 3 \) and the fault \(\varepsilon_7 \) is detected.

Remark 5.2: Since events occur in an asynchronous way, i.e., we are not assuming that there is a global clock, it can obviously happen that the value of \(|w_k|_l \) transmitted by the polled sites to the coordinator is affected by some delay. As a result of this the coordinator receives a value \(|w_k'|_l > |w_k|_l \) because during such a delay other transitions labeled \(l \) may have fired. This implies that the value of \(\beta_k(l, y) \) may be greater than the correct one. In particular, it may occur that a negative value of \(\beta_k(l, y) \) becomes null or even positive, thus certain j-vectors that should be rejected, are considered as feasible. However such a delay may never cause a feasible j-vector to be rejected.

Proposition 5.3: The coordinator under Protocol 3 does not produce any false alarm, namely if \(\bar{\Delta}_i = 3 \), then \(\Delta^*_i = 3 \) as well.

Proof: If the coordinator diagnosis state is \(\bar{\Delta}_i = 3 \), it means that there exists at least one site \(j \in J \) such that \(\Delta_{j,i} = 3 \). It may happen than either \(\Delta_{j,i} = 3 \) as soon as the diagnosis state is computed or that \(\Delta_{j,i} \) becomes equal to 3 after the confutation procedure.
Let us analyze these two situations separately. Now, for the first case, by eq. (1) it is $T_{u,j} \supseteq T_u$. As a consequence, all the justifications that are admissible for the centralized diagnoser are also admissible for the j-th site. However, there may exist other justifications that are admissible for the j-th site while they are not admissible for the centralized diagnoser. This implies that if $\Delta_{j,i} = 3$ then all the justifications computed by the j-th site contain fault transitions in T_i, then for sure any subset of such justifications (including the set of justifications computed by the centralized diagnoser) contains fault transitions in T_i, thus proving the statement.

For the second case, the reduction of the cardinality of the sets of j-vectors relative to certain sites cannot produce false alarm as well. In fact, by definition such a reduction consists in only removing those j-vectors that for sure are not feasible, because they are not consistent with the observations of other sites. Thus in both situations false alarms cannot be produced. □

VI. Diagnosability Analysis

The first important step when analyzing the decentralized diagnosability of a PN system is that of detecting the presence of particular strings, called failure ambiguous strings. This notion has been firstly introduced in [5] in the framework of automata. In particular, in [5] the authors assume that the decentralized diagnoser only includes two sites.

Definition 6.1: Consider a net system $\langle N, M_0 \rangle$ monitored by a set $J = \{1, \ldots, \nu\}$ of sites. Let $T_{o,j} \subseteq T_o$ be the set of locally observable transitions for the generic site $j \in J$. Finally, let $T_i \subseteq T_f$ be the generic i-th fault class, with $i \in F$.

A string $\sigma \in T^*$ such that $t_f \in \sigma$ for at least one $t_f \in T_i$, is said to be failure ambiguous wrt the above set of sites and wrt the fault class T_i, if the following two conditions are verified:

(a) $L_j^{-1}(L_j(\sigma)) \cap (T \setminus T_i)^* \neq \emptyset \ \forall j \in J$;

(b) $\bar{L}^{-\infty}(\bar{L}(\sigma)) \cap (T \setminus T_i)^* = \emptyset$,

where L_j and \bar{L} are defined as in (2), (3), respectively.

In simple words, a sequence σ containing some fault transitions in a fault class i, is failure ambiguous wrt to a set of sites and wrt the i-th fault class, if the word σ is ambiguous for each site $j \in J$, i.e., it may also be explained by a non faulty word, and the word σ is not ambiguous for the centralized system.

Example 6.2: Let us consider the Petri net system in Fig. 3 which is locally diagnosed by two sites whose alphabets are equal to $L_1 = \{a, c\}$ and $L_2 = \{b, c\}$, respectively. The sequence $\sigma =$
The absence of failure ambiguous strings of unbounded length is only a sufficient condition for the diagnosability in a decentralized framework. Thus, depending on the considered protocol, it may occur that the system is diagnosable in a decentralized framework even in presence of failure ambiguous strings of unbounded length. This is the case of Protocol 3, as illustrated by the following example.

Example 6.3: Let us consider the Petri net system in Fig. 4 where \(T_u = T_f = \{\varepsilon_{10}\} \). The net is monitored by two sites whose set of observable transitions is respectively \(T_{o,1} = \{t_1, t_2, t_3, t_6, t_9\} \) and \(T_{o,2} = \{t_4, t_5, t_6, t_7, t_8\} \). This implies that \(L_1 = \{a, c\} \), \(L_2 = \{b, c\} \), \(J_a = \{1\} \), \(J_b = \{2\} \) and \(J_c = \{1, 2\} \).

It is easy to verify that all sequences of the form \(\sigma = \varepsilon_{10}t_1t_4t_6^q \) are failure ambiguous for any
q \in \mathbb{N}. In fact, \mathcal{L}_1(\sigma) = \{ac^q\} and \mathcal{L}_1^{-1}(\mathcal{L}_1(\sigma)) = \{\varepsilon_{10}t_1t_4t_6^q, t_7t_8t_9t_6^q\}, thus \mathcal{L}_1^{-1}(\mathcal{L}_1(\sigma)) \cap (T \setminus T_f)^* = \{t_7t_8t_9t_6^q\}; \mathcal{L}_2(\sigma) = \{bc^q\} and \mathcal{L}_2^{-1}(\mathcal{L}_2(\sigma)) = \{\varepsilon_{10}t_1t_4t_6^q, t_2t_3t_5t_6^q\} thus \mathcal{L}_2^{-1}(\mathcal{L}_2(\sigma)) \cap (T \setminus T_f)^* = \{t_2t_3t_5t_6^q\}; and \bar{\mathcal{L}}(\sigma) = \{\bot\} and \bar{\mathcal{L}}^{-\infty}(\bar{\mathcal{L}}(\sigma)) = \{\varepsilon_{\infty}\} thus \bar{\mathcal{L}}^{-\infty}(\bar{\mathcal{L}}(\sigma)) \cap (T \setminus T_f)^* = \emptyset. Now, if the two local sites communicate with the coordinator according to Protocol 3, then both of them initially compute a diagnosis state that is equal to 2 after the firing of \sigma. However, when the confutation procedure is applied, both of them reconstruct the firing of \varepsilon_{10}. In particular, the first site observes \(w_1 = ac^q \), thus \(Y_{\min}(M_0, w_1) = \{\pi(\varepsilon_{10}t_4), \pi(t_7t_8)\} \) and \(\Delta_1 = 2 \). Similarly, the second site observes \(w_2 = bc^q \) thus \(Y_{\min}(M_0, w_2) = \{\pi(\varepsilon_{10}t_1), \pi(t_2t_3)\} \) and \(\Delta_2 = 2 \) as well. However, both \(\pi(t_7t_8) \) and \(\pi(t_2t_3) \) are confuted, thus the two diagnosis states become \(\Delta_1 = \Delta_2 = 3 \) and the fault is diagnosed.

Let us finally observe that, since by inspection it can be verified that the considered family of sequences \(\sigma \) are the only failure ambiguous strings of unbounded length, we can conclude that the system is diagnosable using Protocol 3 even in the presence of failure ambiguous strings of unbounded length.

VII. A COMPARISON WITH OUR PREVIOUSLY DEFINED PROTOCOLS

As already mentioned in the Introduction, we presented in [11] two other decentralized protocols, named Protocol 1 and Protocol 2. Protocol 1 is based on the idea that each local site communicates its diagnosis state to the coordinator if and only if it is equal to 3. No other information is changed, and the coordinator sets its diagnosis state equal to 3 only if it receives a diagnosis state equal to 3 by at least one local site. Protocol 2 is still based on a confutation procedure, as well as Protocol 3. However, it basically differs from Protocol 3 for the fact that local sites send information to the coordinator if and only if their diagnosis states are equal to 3, while they remain silent if their diagnosis states are 2.

In this section we want to discuss the advantages of using Protocol 3, rather than 1 or 2. Note that obviously Protocol 3 has the disadvantage of requiring a larger amount of information exchanged. Concerning Protocol 1, the first main issue is that it can be easily proved that using Protocol 1 it can never occur that a system is diagnosable in a decentralized way in the presence of failure ambiguous strings of unbounded length. On the contrary, it may be the case that a system is diagnosable in a decentralized framework using Protocol 2 even in the presence of failure ambiguous strings of unbounded length if and only if the set of fault transitions is
partitioned in at least two fault classes, while it cannot occur in the presence of only one fault class. In fact, if there is a single fault class and there exists at least one failure ambiguous string of unbounded length, for that string the diagnosis states of all sites will be equal to 2, thus under Protocol 2 all sites remain silent and the fault cannot be diagnosed. Note that Protocol 3 is not affected by this problem as shown in Example 6.3.

VIII. Conclusions

In this paper we addressed the problem of decentralized diagnosis for labeled PNs. We assume that the system is monitored by \(\nu \) local sites who know the structure of the net and the initial marking, but observe its evolution with \(\nu \) different masks. Each site performs diagnosis locally with a method that we previously introduced in the centralized case. We present a protocol that defines the communication rules between the coordinator and the local sites and specifies how the diagnosis is performed by the coordinator. We proved that the proposed protocol does not produce false alarms. Moreover, we show that the absence of failure ambiguous strings of unbounded length is only a sufficient condition for decentralized diagnosability in the case of the considered protocol. Finally, we compare such a protocol with two other protocols we presented in [11].

REFERENCES

