Policy Management for Virtual Communities of Agents

Guido Boella Leendert van der Torre
University of Torino CWI Amsterdam
Italy The Netherlands

WOA 2003

Web / Grid / P2P / Virtual Communities

Only centralized resource management and global policies?

• may be too heavy burden / affect the core business activities;
• hard to deal with local idiosyncratic situations;
• become more easily obsolete;
• agents cannot enforce local policies of resources they control.

Only decentralized resource management and local policies?

• does not define how resources should be shared among agents;
• local access policies organized according to global policies.

Both global and local policies (MAS-AA, macro-micro).
Example Web Server

- Agent A tries to access web server B.
- Web server B is local resource provider of community C.

Network of dependencies, e.g.:
- A and B depend on C for their membership to the system.
- A depends on B for current and future access to local resource.

Obligations:
1. C tells A not to distribute copyrighted work;
2. B tells A not to store files exceeding 1Gb;
3. C tells B to issue policies respecting global ones.

Problem

"A key problem associated with the formation and operation of distributed virtual communities is that of how to specify and enforce community policies. [...] The exercise of rights is effective only if the resource provider has granted those rights to the community". (Pearlman et al., 2002)

How to rationally balance global & local control in communities?
1. How to define global polices about local policies?
2. How to provide local authorities with the necessary autonomy?

Methodology:
1. Normative control (detective instead of preventative);
2. Combining normative systems and qualitative game theory.
Formal Framework

Attributing mental attitudes to normative systems:

1. **Obligations** are defined in the standard BDI framework.
 ‘Your wish is my command’ relates desires and obligations.
2. Interaction agent and normative system modelled as game.
 Methods of game theory applied to normative reasoning.
3. **Violation** is distinguished from behavior that is sanctioned.
 The normative system autonomously decides which behavior counts as a violation, and whether violations are sanctioned.

Paper: formalization along these lines in rule based system.

Definition of Obligation

Extension of Boella and Lesmo’s definition of obligation to do \(a\):

1. Agent A believes that agent N wants that A does \(a\).
2. Agent A believes that agent N desires no violation \(\neg V(\neg a)\), but if N believes \(\neg a\) then it has the goal to do \(V(\neg a)\);
 \(V(\neg a)\) means \(\neg a\) counts as a violation of some norm \(n\).
3. Agent A believes that agent N desires not to sanction \(\neg s\), but if N decides \(V(\neg a)\) then it has goal to sanctio A by \(s\).
 Agent N only sanctions in case of violation.
 Agent A believes that agent N has a way to apply the sanction.
4. Agent A desires \(\neg s\): it does not like the sanction.

Likewise for permissions.
Nested Obligations and Permissions

Reduced to obligations and permissions concerning violations

- Agent B is obligated by agent C to oblige agent A to do a if q

$$O_{B,C}(O_{A,B}(a|q)) \iff O_{B,C}(V^B_A(\neg a)|q \land \neg a)$$

where $V^B_A(\neg a)$ is a decision variable of agent B.

Nested operators relate local and global policies.

Concluding Remarks

Summary:

1. Balancing global and local policies in virtual communities;
2. Nested operators relate local and global policies;
3. Local resource providers can violate global policies.

Further research:

- Distinguishing enacting permission and granting authorization;
- Delegations of obligations in our framework.