Active Axletree Suspension for Road Vehicles with Gain-Switching

Alessandro Giua, Carla Seatzu, Giampaolo Usai,
Dip. di Ingegneria Elettrica ed Elettronica, Università di Cagliari,
Piazza d’Armi — 09123 Cagliari, Italy
Phone: +39-70-675.58.53 – Fax: +39-70-675.39.00 – Email: {giua,seatzu,usai}@dice.unica.it.

Abstract

In this paper we realize the design of an active–passive suspension system for the axletree of a road vehicle based on a linear model with four degrees of freedom. The optimal control law we propose aims to optimize the suspension performance while ensuring that the magnitude of the forces generated by the two actuators and the total forces applied between wheel and body never exceed given bounds. We derive a solution that takes the form of an adaptive control law that switches between different constant state feedback gains. The results of our simulations show that the bound on the active forces is a design parameter useful for establishing a trade-off between performance and power requirement.

1 Introduction

The suspension system of most vehicles is purely passive, i.e., can be schematized as composed of passive elements, e.g., dampers and springs. In an active suspension the interaction between vehicle body and wheel is regulated by an actuator of variable length. The actuator is usually hydraulically controlled and applies between body and wheel a force that represents the control action generally determined with an optimization procedure.

Active suspensions [2, 8, 9] have better performance than passive suspensions. However, the associated power, that must be provided by the vehicle engine, may reach the order of several 10 KW [7] depending on the required performance. As a viable alternative to a purely active suspension system, the use of mixed active–passive suspensions (an actuator in parallel with a passive suspension) has been considered [1, 4, 7]. Such a system requires a lower power controller. Furthermore, even in case of malfunctioning of the active subsystem the vehicle needs not halt because the passive suspension can still function.

In this paper we first consider a linear mathematical model of the axletree suspension system schematized in figure 1. Then, we propose an optimal control law for active–passive suspensions that aims to optimize the system performance while ensuring that the magnitude of the forces generated by the actuators never exceed a desired value u_{max} and the magnitude of the total forces applied between wheel and body never exceed a desired value $u_{T,\text{max}}$.

This optimization problem takes the form:

$$\min J = \sum_{k=0}^{\infty} x^T(k)Qx(k)$$

s.t.

(a) $x(k+1) = Gx(k) + Hu(k)$

(b) $|u_i(k)| \leq u_{\text{max}}, \quad i = 1, 2$

(b') $|u_i(k) - u_{\text{max}}(k)| \leq u_{T,\text{max}}, \quad i = 1, 2$

where x is the system state, u is a vector whose components are the control forces provided by the actuators, $u_p = -k_p x$ is a vector whose components are the forces generated by the passive suspensions, and $u_A = u - u_p$ is the vector of total forces. The optimal solution of this problem is denoted u^*.

The performance of the suspension system is related to the minimization of the term x^TQx. The constraint (b) on the active forces limits the maximal force required from each controller, i.e., it leads to the choice of suitable actuators. The constraint (b') on the total forces bounds the acceleration of the sprung masses so as to ensure the comfort of passengers and to reduce the risk of loss of contact between wheel and road.

The main problem with this approach is that in general the law u^* cannot be implemented as a feedback law with constant gains and it is difficult to compute [10]. Thus its implementation on-board controllers is unfeasible.

A valid solution to an optimization problem of the form (1) with only one constraint of the form (b) and with scalar input u, has been proposed by Yoshida et al. in [11]. The proposed methodology consists in the approximation of the optimal law u^* by means of an adaptive controller that switches between different constant state feedback gains. Each k_p is the state feedback gain that gives the unconstrained optimal feedback law that min-
imizes a performance index of the form

\[J_\varrho = \sum_{k=0}^{\infty} g_k x^T(k) Q x(k) + ru^2(k) \]

where \(g \) belongs to a discrete set. Yoshida provides a simple algorithm for choosing the suitable \(g \) (i.e., suitable gains) as a function of the present system state while always ensuring that \(|u| \leq u_{\text{max}}\) holds. When the system state is far from the origin a large \(g \) (i.e., small gains) is selected, while for small disturbances a small \(g \) (i.e., large gains) may be used. Yoshida’s procedure can also ensure the stability of the gain-scheduled system: this is an important issue because in general stability is selected, while for small disturbances a small \(g \) as a function of the present system state is important. We call the corresponding law \(\text{Optimal Gain Switching (OGS)} \) and denote it \(u_{\text{OGS}} \).

When compared with the LQR controller [1, 2, 9], the OGS controller has two fundamental advantages. Firstly, it ensures a bound on the magnitude of the forces that each actuator needs to provide. As we impose more strict bounds on the magnitude of the active forces, we have worse performance in terms of sprung mass displacement. Thus, this bound can be seen as a design parameter to establish a trade-off between good performance and power requirement. Secondly, while LQR controllers realize a particular trade-off between performance (term \(x^T Q x \)) and comfort (that depends on the total forces), the OGS controllers adapt the trade-off to different road conditions and car velocities, applying different control laws depending on the magnitude of the disturbance.

2 Optimal Gain Switching Procedure

Let

\[x(k+1) = G x(k) + H u(k) \]

be a linear time-invariant dynamic system, where \(x \in \mathbb{R}^n \) is the system’s state, \(u \in \mathbb{R}^m \) is the system input, \(G \in \mathbb{R}^{n \times n} \) and \(H \in \mathbb{R}^{n \times m} \).

Let us consider the following optimization problem:

\[
\begin{align*}
\min J &= \sum_{k=0}^{\infty} x^T(k) Q x(k), \\
\text{s.t.} \quad &(a) \quad x(k+1) = G x(k) + H u(k) \\
&\quad (b) \quad |\alpha_j^T u(k) + \beta_j^T x(k)| \leq \gamma_j, \quad j = 1, \ldots, p, \quad k \geq 0,
\end{align*}
\]

where \(Q \) is positive semidefinite, \(\alpha_j \in \mathbb{R}^m \) and \(\beta_j \in \mathbb{R}^n \). In this problem, in addition to constraint (a) that represents the system’s dynamics, we have \(p \) constraints of the form (b): each one limits the magnitude of a linear combination of the input and of the state entries.

This optimal control problem has already been studied in the particular case of a scalar input and a single constraint \((p = 1)\) on the input magnitude \((\alpha_1 = 1, \beta_1 = 0)\). In such a case the constraint takes the simpler form:

\[|u(k)| \leq \gamma \quad k \geq 0. \tag{4} \]

Wonham and Johnson [10] demonstrated that in this case the optimal solution \(u^*(\cdot) \) does not correspond in general to a feedback control law and furthermore, its computation is quite burdensome. Yoshida et al. [11] have proposed a simple procedure that approximates such optimal control law \(u^*(\cdot) \) by switching among feedback control laws whose gains can be computed solving a family of LQR problems.

In this paper we use an extension of Yoshida’s procedure to solve the more general problem (3) firstly proposed by the authors in [6]. We call this procedure \(\text{Optimal Gain Switching (OGS)} \) and the corresponding feedback law will be denoted as \(u_{\text{OGS}}(\cdot) \).

2.1 Single constraint

Let us consider a linear time-invariant system of the form (2) and the corresponding optimization problem of the form (3) with a single constraint \((b)\). Furthermore, let us consider a family of performance indexes \(J_\varrho \) of the form

\[J_\varrho = \sum_{k=0}^{\infty} g_k x^T(k) Q x(k) + u^T(k) R u(k). \tag{5} \]

For a given value of \(\varrho \) the unconstrained control law \(u_\varrho(\cdot) \) that minimizes \(J_\varrho \) for system (2) can be written as

\[u_\varrho(k) = -k_\varrho x(k) \tag{6} \]

where the gain matrix \(k_\varrho \) can be computed by solving an algebraic Riccati equation. Furthermore, for every gain factor \(\varrho \) it is possible to compute a linear region \(\Gamma_\varrho \) in the state space such that for any point \(x_0 \) within this region the following equation holds \(\forall k \geq 0 \):

\[|\alpha^T u_\varrho(k) + \beta^T x(k)| \leq \gamma \tag{7} \]

where \(G_\varrho = G - H k_\varrho \). Thus, if we consider the system (2) with control feedback law \(u_\varrho \) and an initial state \(x_0 \in \Gamma_\varrho \) we can be sure that in its future evolution the value of the control input and of the state are such that equation (3.b) is always satisfied.

The following proposition and constructive algorithm provide a simple procedure to determine if \(x_0 \in \Gamma_\varrho \).

Proposition 1. Let \(\Gamma_\varrho \) be a linear region defined as above and \(x_0 \) a generic initial state vector. There exists a finite \(q_\varrho \in \mathbb{N} \) such that \(x_0 \in \Gamma_\varrho \) if and only if equation (7) is satisfied for \(k = 0, 1, \ldots, q_\varrho \).

The value of \(q_\varrho \) can be easily computed. In fact, let us define for \(k \in \mathbb{N} \) the sequence of vectors \(z_k = (-\alpha^T k_\varrho + \beta^T) G_\varrho^k x_0 \) and let

\[C(z_0, \ldots, z_q) := \{ z = a_0 z_0 + \cdots + a_q z_q \mid |a_0| + \cdots + |a_q| \leq 1 \} \]

be the set of convex combinations of the vectors \(\pm z_0, \ldots, \pm z_q \).
In [11] it was proved that q_0 is the smallest non negative integer such that $z_{q_0 + 1} \in C(z_0, \ldots, z_{q_0})$. Furthermore, to check if a vector z belongs to $C(z_0, \ldots, z_q)$ we may compute the $n \times (2q + 2)$ matrix $D := [z_0, z_1, \ldots, z_{2q + 1}]$ where
\[
\begin{cases}
 \dot{z}_i := z_i - z, \\
 \dot{z}_{i+q+1} := -z_i - z,
\end{cases} \quad i = 0, \ldots, q
\]
and solve the following linear programming problem (LPP) where we have denoted 1 a vector of 1’s
\[
\begin{align*}
 \max & \quad 1^T y \\
 \text{s.t.} & \quad Dy = 0 \\
 & \quad y \geq 0.
\end{align*}
\]
The vector z belongs to $C(z_0, \ldots, z_q)$ iff the optimal solution of this LPP is unbounded.

Thus, having computed the value of q_0, if we choose
\[
Z = \frac{1}{\gamma} \begin{bmatrix}
 z_0^T \\
 z_1^T \\
 \vdots \\
 z_{q_0}^T
\end{bmatrix}
\]
we have that $x_0 \in \Gamma_q$ if and only if
\[
-1 \leq Z x_0 \leq 1.
\]
The control procedure can be briefly summarized as follows. A set of LQR optimal feedback gains corresponding to different weighting factors in the quadratic function J_γ is chosen, and then, at each sampling instant, the highest gain γ such that the current state $x(k)$ belongs to Γ_γ is applied. Note that in Yoshida’s approach the switching of gains leads to a monotonically nondecreasing sequence of γ if we assume no external disturbance is acting on the system. This is the essential feature of the method and allows us to extend to the OGS law the stability property enjoyed by LQR control laws, while reducing the performance index $\sum_{k=0} x(k)^T Q x(k)$ with respect to a fixed gain.

A final comment regarding the OGS procedure. Each gain matrix is computed for an infinite time horizon solving an algebraic Riccati equation, but is used only for a finite time horizon (with the exception of the gain matrix corresponding to the highest γ). The idea of computing the OGS gains for a finite time horizon (solving a dynamic Riccati equation) is not practical, because the switching times are not easy to compute and this law would lead to time-varying gains.

2.2 Multiple constraints

Now, let us consider the multiple constraint optimization problem of the form (3). In such a case the same discussion as above can be repeated for every constraint. So we can define:
\[
Z = \begin{bmatrix}
 Z_{\gamma,1} \\
 Z_{\gamma,2} \\
 \vdots \\
 Z_{\gamma,P}
\end{bmatrix}, \quad Z_{\gamma,j} = \frac{1}{\gamma_j} \begin{bmatrix}
 \alpha_j G \gamma_j + \beta_j G \gamma_j^T \\
 \alpha_j G \gamma_j^T + \beta_j G \gamma_j \\
 \vdots \\
 \alpha_j G \gamma_j + \beta_j G \gamma_j^T
\end{bmatrix},
\]
where each matrix $Z_{\gamma,j}$ is relative to the j-th constraint of type (3.b). Note, however, that in general the matrix Z may have redundant rows (i.e., rows that belong to the convex combination of the other ones) and that can be determined solving an LPP as outlined above. We discard the redundant rows thus obtaining a matrix of \tilde{q} rows that we call \tilde{Z}. As in the single constraint problem we have that
\[
-1 \leq \tilde{Z} x_0 \leq 1 \iff x_0 \in \bigcap_{j=1}^p \Gamma_{\gamma,j}.
\]

We propose to choose, at each sampling instant, the highest gain γ from a given finite set, such that the current state x belongs to $\Gamma_\gamma = \bigcap_{j=1}^p \Gamma_{\gamma,j}$. Therefore, the control procedure consists in two phases and can be briefly summarized with the following algorithm.

Algorithm 2. Optimal Gain Switching (OGS). The algorithm is divided into off-line and on-line portions.

Off-line phase

1. Choose a finite set of r values for γ, namely $\{\gamma_1, \gamma_2, \ldots, \gamma_r\}$, with $\gamma_1 < \gamma_2 < \cdots < \gamma_r$.
2. Determine for each γ_i the corresponding gain matrix k_{γ_i} by solving an LQR problem with performance index of the form (5).
3. Construct for each γ_i the corresponding matrix Z_{γ_i}, following the procedure described above.

On-line phase

1. Let $k := 0$.
2. Let $\overline{\gamma} := \max_i \{\gamma_i | x(k) \in \bigcap_{j=1}^p \Gamma_{\gamma,j}\}$.
3. Set up the control according to $u(k) = -k_{\overline{\gamma}} x(k)$.
4. Put $k := k + 1$ and return to Step 2.

If the initial state $x(0) \in \Gamma_{\gamma}$ for $\gamma \in \{\gamma_1, \ldots, \gamma_r\}$, then we can be sure that, in the absence of external disturbances, at Step 3 of the on-line phase a value $\overline{\gamma}$ always exists. In fact, the value of $\overline{\gamma}$ determined at the previous iteration can still be used if a higher value cannot be found. Thus we can be sure that in the absence of external disturbances the switching of feedback gains leads to a monotonically nondecreasing value of γ, so stability is ensured.

It is important to highlight the advantages and limits of the OGS control scheme. It has been shown by Yoshida, in the case of a single constraint of the form (4), that the control law $u_{\text{OGS}}(\cdot)$ leads to values of the performance index in (3) that are close to the absolute minimum given by the optimal control law $u^*(\cdot)$. In the following we will show, by numerical simulations, that the same conclusions are still valid in presence of multiple constraints.

The computational complexity of the OGS control law warrants comment. The most burdensome part of this procedure is the off-line phase, where the matrices $Z_{\gamma,j}$ are computed. During the on-line phase, it is necessary to compute at most $r \times p$ matrix products $Z_{\gamma,j} x(k)$ at each sampling instant k. The number of rows of the different $Z_{\gamma,j}$ is not constant and is equal to \tilde{q} + 1. In Section 3, we will discuss the computational complexity relative to the determination of the OGS control law.
3 Dynamical model of the suspension system

We refer to the completely active suspension with four degrees of freedom schematized in figure 2. We used the following notation: M_1 is the equivalent unsprung mass of the wheel and of the moving parts of the suspension connected thereto; M_2 is the sprung mass, i.e., the part of the whole body mass and the load mass pertaining to the axletrees; J_0 is the moment of inertia of the sprung mass with respect to the barycentric axis perpendicular to the drawing plane; λ is the elastic constant of the tire; f is the coefficient that takes into account the damping of the tire; $2d$ is the wheel-track; $x_1(t)$, $x_2(t)$, $x_3(t)$, $x_4(t)$ represent the deformations with respect to the static equilibrium configuration, taken as positive if they are elongations, of the left tire, left suspension, right tire and right suspension, respectively; $x_2(t)$, $x_5(t)$, $x_6(t)$ represent the absolute vertical velocities, taken as positive if directed upwards, of the barycentres of the unsprung left and right-hand mass and sprung mass respectively; $x_3(t)$ represents the angular velocity, taken as positive when clockwise, of the sprung mass; u_{T1}, u_{T2} represent the left and right total control forces respectively.

The above system can be modeled with the following equation:

$$\dot{x}(t) = Ax(t) + Bu_T(t)$$

where $x(t) \in \mathbb{R}^8$ is the state, $u_T(t) \in \mathbb{R}^2$ is the control input, $A \in \mathbb{R}^{8 \times 8}$ and $B \in \mathbb{R}^{8 \times 2}$ are constant matrices.

4 Design of an active-passive suspension

A completely active suspension comprises numerous parts, where the main component is an actuator that is capable of supplying the entire control force, and its dimension satisfies the system’s maximum power requirements. We examine the possibility of reducing the power requirements, and hence the size of the active part of the suspensions, using a combination of active and passive components as shown in figure 1, where the passive components are assigned the task of providing part of the control actions thereby minimizing the power absorbed by the active part.

The following notation has been used in the figure: K is the elastic constant of the spring; f is the characteristic coefficient of the damper; K_b is the elastic constant of the stabilizing bar; $u = [u_1, u_2]^T$ is the vector of control forces that must be realized by the actuators.

The passive components are assumed to exhibit linear behaviour.

It is easily shown that the passive suspension provides a contribution $u_p(t)$ to the total control forces $u_T(t)$ which can be expressed as:

$$u_p(t) = -k_p x(t)$$

being:

$$k_p = \begin{bmatrix} 0 & -f & K + K_b & f & 0 & 0 & -K_b & d \cdot f \\ 0 & -K_b & f & 0 & -f & K + K_b & -d \cdot f \end{bmatrix}.$$ \hspace{1cm} (10)

So, at every instant, it is:

$$u_T(t) = u_p(t) + u(t).$$ \hspace{1cm} (11)

Let us observe the dynamical system schematized in figure 1 and described by equation (8). It can also be thought of as a system with only the active control input and a different dynamical matrix, so equation (8) can be rewritten as:

$$\dot{x}(t) = (A - Bk_p)x(t) + Bu(t) = A_p x(t) + Bu(t).$$ \hspace{1cm} (12)

Note that the control law we will design in the following sections requires the knowledge of the system state, that is not directly measurable. However it can be reconstructed through an appropriate state observer, assuming available the measurements of the suspension deformations and the sprung mass velocity (via an accelerometer) [5].

The control approach we will follow uses a discrete-time state space model. Thus we choose a sampling interval T and discretize equation (12) to obtain

$$x(k + 1) = G_p x(k) + H u(k)$$ \hspace{1cm} (13)

where

$$G_p = e^{A_p T}, \quad H = \left(\int_0^T e^{A_p \tau} d\tau \right) B.$$

Now, let us consider a family of performance indexes:

$$J_q = \sum_{i=0}^{\infty} q^i x^T(k)Qx(k) + u(k)Ru(k).$$ \hspace{1cm} (14)

We want to apply the OGS procedure to system (13) and determine the corresponding feedback control law such that the following constraints hold:

$$|u_i(k)| \leq u_{\text{max}}, \quad i = 1, 2$$ \hspace{1cm} (15)

$$|u_T(i)| \leq u_{T,\text{max}}, \quad i = 1, 2.$$ \hspace{1cm} (16)

This means that we can determine a control law whose magnitude is bounded in order to reach a good trade-off between road holding and comfort of passengers. Under appropriate assumptions on the maximum value of the
suspension deformation velocity, the bound on the active control forces allows us to constrain the power supplied by the actuators and can be used to design each actuator in terms of the required power. Constraints (15) and (16) are of the form (3.1b) with $\alpha_1 = e_1$, $\beta_1 = 0$, $\gamma_1 = u_{\text{max}}$, $\alpha_2 = e_2$, $\beta_2 = 0$, $\gamma_2 = u_{\text{max}}$, $\alpha_3 = e_1$, $\beta_3^T = -e_1^T k_p$, $\gamma_3 = u_{T, \text{max}}$ and $\alpha_4 = e_2$, $\beta_4^T = -e_2^T k_p$, $\gamma_4 = u_{T, \text{max}}$, respectively, being e_i the i-th column of the 2nd order identity matrix.

5 Application example

In this section we discuss the results of some numerical simulations. The proposed procedure has been applied to the half-car vehicle model shown in figure 1, with values of the parameters taken from [3]: $M_1 = 28.58$Kg, $M_2 = 2 \times 288.90$Kg = 577.8Kg, $\lambda = 155900$N/m, $f_1 = 400$Ns/m, $J_2 = 108.3$Kg m2 $d = 0.75$m. Matrices Q and R have been chosen as in [3], as well as the values of $f = 1081$Ns/m, $K = 1548$N/m, $K_5 = 5496$N/m.

The control approach we have followed in this paper makes use of a discrete-time state space model. A suitable choice of the sampling interval is $T = 0.01$s as discussed in [3].

We have taken $u_{T, \text{max}} = 3000$N that is slightly less than the total weight resting on one wheel. A higher total control force may cause the loss of contact between wheel and road. Furthermore, this constraint also limits the acceleration of the sprung mass and this is a necessary condition for the comfort of passengers.

Another important aspect of the proposed design procedure deals with the choice of the weighting coefficients $\{g_1, g_2, \ldots, g_r\}$. The weighting coefficient g_i should be determined so that the linear region $\Gamma_{g_{i,1}} \cap \Gamma_{g_{i,2}} \cap \Gamma_{g_{i,3}} \cap \Gamma_{g_{i,4}}$ contains all initial conditions of interest. The weighting coefficient g_r should be selected so that the region $\Gamma_{g_{r,1}} \cap \Gamma_{g_{r,2}} \cap \Gamma_{g_{r,3}} \cap \Gamma_{g_{r,4}}$ covers small disturbances or very little system noises. The other weighting coefficients have been chosen, following Yoshida [11], such that the ratio of the 2-norm for two adjacent total gains $(k_{g_r} + k_{g_{r-1}})$ is $\approx 1.6 \div 1.8$. We have assumed $r = 10$ as it seems a good trade-off between computational efficiency and performance index.

In the following we provide the results of two series of numerical simulations in order to underline the main conclusions relative to the proposed procedure.

5.1 Simulation 1

In the first simulation we compare the performances of a completely passive suspension system with active-passive suspension systems characterized by different values of the constraint on the active forces.

The numerical values of the parameters relative to the completely passive suspension are the same as those of the passive part in the tandem suspension system. We assume $x_1(0) = -x_2(0) = 0.02$m, $x_2(0) = -x_2(0) = 0.1$m, $x_2(0) = x_4(0) = x_6(0) = 0$m/s, $x_6(0) = 0$rad/s.

The main results of the comparison are reported in figure 3 where we can observe the variations of the system evolution in presence of actuators of increasing size. We have considered four different values for u_{max}: 400, 700, 1000, 1300N whose increasing value is denoted by an arrow. Figures 3.a and 3.c compares the deformation of the left and right tire, respectively, for the completely passive suspension with those of the active-passive suspensions. In these figures we can note that as u_{max} is increased the unsprung mass reaches sooner the equilibrium state although with a greater overshoot in the first time instants. Figures 3.b and 3.d compare the deformation of the left and right suspension respectively, for the completely passive system, with those of the active-passive suspensions. In these figures we observe that as u_{max} is increased the sprung mass reaches sooner the equilibrium state with decreasing overshoots. We can also observe that the lessening of the suspension deformations are always less significant as u_{max} exceeds 700N. Therefore, we conclude that it is possible to guarantee good performances even with relatively small size actuators which, furthermore, limit the overshoots of the tires deformations.

5.2 Simulation 2

In this subsection we introduce an external disturbance given by the road profile.

Let us first discuss how its presence modifies the state space equation (8). Let $u_L(t)$ and $u_R(t)$ reported in figures 1–2, be the absolute vertical velocities of the points of contact with the road of the left and right tire respectively. Such velocities are caused by the uneven road profile and can be white noise signals, which is equivalent to saying that any longitudinal road profile can be represented by an integrated white noise [5, 8, 9]. Here, the road roughness characteristics are expressed by a signal whose PSD distribution function is [8]:

$$\Psi(\omega) = \frac{cV}{\omega^2 + \alpha^2\omega^2}$$

where $c = (\sigma^2/\pi)\alpha$. Here σ^2 denotes the road rough-
In this simulation test we assume that the disturbance profile and power spectral density for such an input disturbance can be obtained as the output of a linear filter expressed by the differential equation

\[x_{0L}(t) = -\alpha V x_{0L}(t) + w_L(t) \] \hspace{1cm} (18)

where the subscript \(L \) stands for left. The same holds for the right disturbance.

By taking into account the above disturbances, state equation (8) can be rewritten as

\[\dot{x}(t) = Ax(t) + Bu_T(t) + Lw(t) \] \hspace{1cm} (19)

where \(w = [w_L(t) w_R(t)]^T \) is the disturbance vector and \(L \in \mathbb{R}^{6 \times 2} \) [6].

In this simulation test we assume that the disturbance acting on the system is caused by a very rough road profile. Crosby and Karnopp [4] gave the power spectral density for such an input disturbance. We were able [5] to obtain a similar power spectral density by choosing in equation (17) the following parameter values: \(\alpha = 0.2 \text{ m}^{-1}, \sigma^2 = 0.1 \text{ m}^2 \) and \(V = 20 \text{ m/s} \). Furthermore, we assume \(u_{\text{max}} = 500 \text{ N} \) and a null initial state.

The results of simulation 2 are shown in figure 4. Figure 4a (4b) shows the left (right) road profile along with the left (right) wheel and left (right) sprung mass displacement. It is possible to observe that the suspension filters the high frequencies smoothing the movement of the sprung mass. Figure 4c shows the active forces \(u_1 \) and \(u_2 \), while the total forces \(u_{T1} \) and \(u_{T2} \) are reported in figure 4d.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4}
\caption{The results of simulation 2.}
\end{figure}

\section*{6 Conclusions}

In this work we have presented a design methodology for active-passive suspension systems. The design procedure is based on the minimization of a quadratic performance index that penalizes the tires and the suspension deformations, while requiring that the total forces applied between wheel and body and that the fraction of the forces generated by the actuators never exceed given bounds.

The constraint on the actuator forces can be used to dimension the actuators, so that it is required to provide only a fraction of the total forces generated by the suspension systems.

The constraint on the total forces bounds the acceleration on the sprung masses so as to ensure the comfort of passengers and to reduce the risk of loss of contact between wheels and road. Simulations showed that these constraints are active only when the system state is far from the origin.

The results of same numerical simulations for a half-car vehicle model have also been presented.

\begin{thebibliography}{10}

\bibitem{6} A. Giua, C. Seatzu, G. Usai, "A mixed suspension system for a half-car vehicle model," \textit{Dynamics and Control}, (conditionally accepted).

\end{thebibliography}