Introduction: Dynamic Observations and Sensor Activation
Problem 1: Optimizing Information Acquisition in Distributed Event Diagnosis
Problem 2: Transformation of Coobservability to Codiagnosability
Modeling

Discrete Event System (DES) modeled by (monolithic) automaton G

- $\mathcal{L}(G)$ denotes the language generated by G

Decentralized information structure:

- \mathcal{A}: The set of agents (diagnosers or controllers)
- $E_{o,i}$: Event set whose elements are *directly* observable by $i \in \mathcal{A}$
- $E_{uo,i}$: Event set whose elements cannot be *directly* observed by $i \in \mathcal{A}$
Dynamic Observations

What does *Dynamic Observations* mean?

- The observation of event occurrences by each agent are *trajectory-dependent*

This arises in many problem instances:

- Agents may turn their sensors on/off dynamically
- Agents may communicate with one another
- Observability properties of an event may depend on the system state; e.g., reconnaissance unmanned aerial vehicle (UAV)
Formally, whether or not an event occurrence is observable by agent i, $i \in A$, is captured by the observation mapping $\omega_i : \mathcal{L}(G) \rightarrow 2^{E_o}$.

After the occurrence of s, the next event e is seen or observed by agent i when it occurs after s if and only if it is in $\omega_i(s)$.
Using the observation mapping $\omega_i, i \in A$, we define the corresponding *information mapping* (or projection)

$$\theta^{\omega_i} : \mathcal{L}(G) \rightarrow E_0^*$$

recursively as follows:

- For the empty string ε, $\theta^{\omega_i}(\varepsilon) = \varepsilon$, and
- for all $s, se \in \mathcal{L}(G)$ with $e \in E$,

$$\theta^{\omega_i}(se) = \begin{cases}
\theta^{\omega_i}(s)e & \text{if } e \in \omega_i(s) \\
\theta^{\omega_i}(s) & \text{otherwise}
\end{cases}$$
Sometimes, if an agent “sees more,” this may cause *distinguishable* trajectories to become *indistinguishable*!

Example:

- \(L = \{aab, ab\} \)
- If one occurrence of event \(a \) in \(aab \) is not “seen” by an agent, then \(aab \) and \(ab \) looks the same
- But if both occurrences of \(a \) in \(aab \) are not “seen” by the agent, then the agent sees \(aab \) as \(b \) but \(ab \) as \(ab \)
 \[\Rightarrow \] the agent can distinguish these two trajectories!
- This is possible when another agent who directly observes all occurrences of \(a \) and \(b \) selectively communicates such occurrences to the given agent

But: *If the agent is responsible for turning its sensors on/off, then this cannot happen!*
Introduction: Dynamic Observations and Sensor Activation

Problem 1: Optimizing Information Acquisition in Distributed Event Diagnosis
Reference:

Problem 2: Transformation of Coobservability to Codiagnosability
Information acquisition (dynamic sensor activation) may be costly, e.g., if sensors are operated in environments with limited resources (energy, bandwidth, security, etc.)

- In a UAV system, making a measurement may cost hours of flight
- In a radar system, emitting radar signals can be dangerous
- The life span of a sensor often depends on how often it is used
Estimation and *information acquisition* (IA) are agent-wise interdependent

- What you acquire in the past affects your estimation (θ_i)
- What you estimate influences your future acquisition decisions (ω_i)

Figure: IA for Distributed Diagnosis

Figure: IA for Distributed Control
Information Acquisition in Partially Observed DES

- **Static sensor optimization:**

 [Haji-Valizadeh et al., 1996], [Debouk et al., 2002], [Jiang et al., 2003]

- **Dynamic sensor activation for diagnosis or opacity:**

 [Thorsley-Teneketzis, 2007], [Cassez-Tripakis, 2008], [Cassez et al., 2009]

- **Optimizing sensor activation for state disambiguation (control):**

 [Wang et al., 2010]

- **Communication for control and diagnosis in decentralized control problems:**

 [Wong-van Schuppen, 1996], [Ricker-Rudie, 1999], [Barrett-Lafor
tune, 2000], [Rudie et al., 2000], [van Schuppen, 1998, 2004], [Boel-van
cussen, 2002], [Wang et al., 2008], [Ricker-Caillaud, 2009], and more.
Information acquisition policy (IAP) is a specific class of observation mapping

1 Instead of 2^{E_0}, the range of observation mapping becomes $2^{E_{0,i}}$:

$$\omega_i : \mathcal{L}(G) \rightarrow 2^{E_{0,i}}$$

2 Feasibility in the context of Information Acquisition: two trajectories that have the same information mapping must be followed by the same acquisition decisions: $(\forall s, t \in \mathcal{L}(G))$

$$\theta^{\omega_i}(s) = \theta^{\omega_i}(t) \implies \omega_i(s) = \omega_i(t)$$
If two strings “look the same,” then they must have same activation decision on a *common possible event*.

If \(a \) is activated initially, then:
Not activating \(g \) initially and \(a \) after string \(g \) is not feasible!
\[\rightarrow \text{after } \epsilon \text{ and } g, \text{ we must have the same activation decision for } a \]

This is called the *feasibility* requirement of IAP.
Since information acquisition is “costly,” it is desirable to find a *minimal, feasible* IAP while maintaining the property of *codiagnosability*. → The enforcement of codiagnosability is one approach to break the dependency between estimation and information acquisition.

Figure: IA for Distributed Diagnosis

Issues:
- Codiagnosability
- Optimization space
- Monotonicity
Codiagnosability

- E_F: Set of fault events to be diagnosed
- Π_F is obtained by partitioning E_F into disjoint sets of different fault types:
 \[E_F = E_{f_1} \cup \ldots \cup E_{f_K} \]
- $s \in \Psi(f_k)$ denotes that the last event of $s \in L(G)$ is a fault event of type f_k
- $L(G)/s = \{t \in E^* : st \in L(G)\}$ is the postlanguage of $L(G)$ after s
- $f_k \in s$ means that s contains an event in E_{f_k}
Codiagnosability

Definition (Codiagnosability)

A prefix-closed and live language $\mathcal{L}(G)$ is said to be codiagnosable with respect to θ_i, $i \in \mathcal{A}$, and Π_F on E_F if:

$$(\forall k \in \Pi_F)(\exists n_k \in \mathbb{N})(\forall s \in \Psi(f_k))(\forall t \in \mathcal{L}(G)/s)[|t| \geq n_k \Rightarrow CD]$$

where the codiagnosability condition CD is

$$(\exists i \in \mathcal{A})(\forall \mu \in \mathcal{L}(G))\theta_i(\mu) = \theta_i(st) \Rightarrow f_k \in \mu$$

In words, under information mappings θ_i, $i \in \mathcal{A}$, $\mathcal{L}(G)$ is codiagnosable if after any $s \in \mathcal{L}(G)$ ending with an event in E_{f_k} occurs, there is always an agent $i \in \mathcal{A}$ that can infer, after a finite number of event occurrences, that an event in E_{f_k} has occurred.
Language-based Partition

Why partition the language?
- The domain of IAP
 \[\omega_i : \mathcal{L}(G) \rightarrow 2^{E_{o,i}} \]
 typically has infinite cardinality
- The solution space for IAP should be finite

How to partition the language?
- Could use the state space of \(G \): state-based or transition-based solutions
- More general approach: Define IAP over a finite partition of \(\mathcal{L}(G) \)
- Constraint: All strings in the same element of the partition must have the same last event and the same acquisition decision for their last event
Language-based Partition

- \(\Delta \) is Language-based Partition (LBP) if its elements \(\delta_j \), \(j = 0, 1, \ldots, m \), satisfy
 - \(\Delta \) is a partition of \(L(G) \)
 - \(\delta_0 = \{ \varepsilon \} \) is a singleton
 - Any strings in the same element \(\delta_j \in \Delta \) must have the same last event

- IAP: \(\Omega \subseteq \Delta \)
 - For all \(\delta_i \in \Omega \), when the last event of a string in \(\delta_i \) occurs, the information for that event is acquired

- Notation:
 - In a distributed system with \(\mathcal{A} = \{1, \ldots, N\} \), \(\bar{\Delta} = [\Delta_1, \ldots, \Delta_N] \), \(\bar{\omega} = [\omega_1, \ldots, \omega_N] \), and \(\bar{\Omega} = [\Omega_1, \ldots, \Omega_N] \)
Problem Statement

For a system G with set of agents \mathcal{A} and a given vector of LBP $\bar{\Delta}$, find a \textit{minimal} and feasible IAP $\bar{\Omega}^*$ under which G is codiagnosable.

IAP $\bar{\Omega}^*$ is minimal if G is not codiagnosable under all other feasible IAP $\bar{\Omega} \subset \bar{\Omega}^*$

$\bar{\Omega} \subset \bar{\Omega}^*$ means that, for all $i \in \mathcal{A}$, $\Omega_i \subseteq \Omega_i^*$ and, for at least one $j \in \mathcal{A}$, $\Omega_j \subset \Omega_j^*$
Main Theorems

Theorem (Monotonicity of IAP in Diagnosis)

Let feasible IAPs $\bar{\omega}'$ and $\bar{\omega}''$ satisfy $\bar{\omega}' \subseteq \bar{\omega}''$. Then, $\mathcal{L}(G)$ codiagnosable under $\bar{\omega}'$ implies $\mathcal{L}(G)$ codiagnosable under $\bar{\omega}''$.

- Recall that for general observation mappings, monotonicity is not always true
 - Monotonicity may not hold when agents communicate event occurrences
- IAP satisfies monotonicity because
 - An agent must make the same acquisition decisions right after trajectories that look the same to that agent and
 - An agent changes to its IAP only affect its own observations
Main Theorems

Theorem (Maximum Feasible Subpolicy for an Agent)

Given G with a fixed LBP Δ, let $\Omega \subset \Delta$ be an observation mapping that is not feasible. Then, among all feasible IAP $\Omega' \subseteq \Omega$, there exists a maximum feasible IAP $\Omega^{\uparrow F} \subseteq \Omega$ s.t. $\Omega' \subseteq \Omega^{\uparrow F}$.

- The proof follows from the facts that Δ is finite and that the union of two feasible IAPs is also a feasible IAP, where:
 - under the union of two IAPs, the agent decides to acquire the information of the next occurrence of an event iff the agent decides to acquire such information under either or both of these two IAPs.
Algorithm Main

Input: System G, agent set \mathcal{A}, observable events set $E_{o,i}$, vector of LBP $\bar{\Delta}$, sets of fault events E_{f_k}, and a feasible IAP $\bar{\Omega}$ (vector of nonempty sets) under which the system is codiagnosable

Output: Minimal sensor activation policy $\bar{\Omega}^*$

Iterations:
- Pick one agent and remove “one” set of sensor activations by assigning one element of its IAP to “no activation”
 → Recall that IAP is a subset of LPB: $\Omega \subseteq \Delta$
- Use the existence of the Maximum Feasible Subpolicy
 → Run algorithm for $\uparrow F$ after a removal
- Test codiagnosability
- Repeat
Algorithm \textbf{Main}

\textbf{Iterations:}

0. Initialization: Set $D = [D_1, \ldots, D_N]$ being the vector of N empty sets

1. Select an agent $i \in A$ and a $\delta_{i,k} \in \Omega_i$ that has not been examined yet. Let Ω_i' be the result of deleting $\delta_{i,k}$ from Ω_i. Calculate $\Omega_i'^{\uparrow F}$ (the maximum IAP of Ω_i'). Let $\bar{\Omega}'$ be the policy obtained by replacing Ω_i with $\Omega_i'^{\uparrow F}$ in $\bar{\Omega}$

2. Test codiagnosability for $\bar{\Omega}'$. If it holds, set $\bar{\Omega} \leftarrow \bar{\Omega}'$. Otherwise, set $D_i \leftarrow D_i \cup \{\delta_{i,k}\}$

3. Repeat Step 1 to 2 until $\bar{D} = \bar{\Omega}$. Then, set $\bar{\Omega}^* \leftarrow \bar{\Omega}$
Intuitive Explanation of Algorithm MAIN

- We try to remove $\delta_{i,k}$ from Ω_i by setting $\Omega_i' \leftarrow \Omega_i \setminus \{\delta_{i,k}\}$
- Since $\Omega_i^{\uparrow F}$ is the maximum subpolicy of Ω_i', by the monotonicity theorem, if the test of codiagnosability fails under $\overline{\Omega}'$, $\delta_{i,k}$ cannot be removed from Ω_i without increasing acquisitions of some other agent(s)
- We add $\delta_{i,k}$ into D_i to record that the removal failed
- If the codiag test passes and moreover nothing from D_i was removed by $\uparrow F$, we shrink $\overline{\Omega}$ by setting it to be $\overline{\Omega}'$
- Since we always reduce acquisition and reducing acquisition always harms codiagnosability, for all $i \in A$, all elements in D_i can never be removed when the algorithm proceeds further
- Hence, we have $\overline{\Omega} = \overline{D}$ within finite iterations and when $\overline{\Omega} = \overline{D}$ we know that a minimal solution has been obtained
Algorithm **MAIN**: Discussion

Comments:
- $\bar{\Omega}^*$ depends on the order in which elements in $\bar{\Delta}$ are considered
- In principle, all minimal solutions could be computed
- In practice, one could follow a priority ordering for the sensors and agents

Still to be specified:
- Algorithm to do $\uparrow F$
- Algorithm to test Codiagnosability [Wang et al., ECC 2009]
The calculation of maximum subpolicy $\Omega_i^{\uparrow F}$ depends on how language $\mathcal{L}(G)$ was partitioned by an LPB.

We developed a method to partition language $\mathcal{L}(G)$, called Window Partition Δ^w, for which $\uparrow F$ can be computed.

Intuition: For $\delta_i \in \Delta^w$, whether a trace $s \in \delta_i$ or not is determined by both the state reached before the last event in s and the suffix of the last n event occurrences of s.

Reasons:
- Current state and recent event occurrences are important in practice.
- Window partitions are amenable to refinement (choice of n), which achieves balance between computational effort and quality of solutions.
- If $n = 1$, then we recover “transition-based” approaches.
The set $\Delta^w = \{ \delta_i \subseteq \mathcal{L}(G) : i = 0, \ldots, m \}$ is called an n-Window-Partition of $\mathcal{L}(G)$ if

- For all $u \in \mathcal{L}(G)$, if $\|u\| < n$ then $\{u\} \in \Delta^w$.
- For all $u, v \in \mathcal{L}(G)$ with their length larger or equal to n, u and v are in the same element of the partition iff
 - they have same subsequence of last n event occurrences and,
 - before the last event occurrence, they reach the same state in G.

Wang & al. (UM)
Window-Partition with $n = 2$:

$$\Delta^w = \{ \{ \epsilon \}, \{ f \}, \{ d \}, \{ e \}, (b, 0, f), (b, 0, d), (b, 0, e), (f, 1, a), (c, 1, a), (e, 2, a), (a, 3, e), (e, 4, b), (a, 4, b), (d, 5, c) \}$$
Algorithm for $\uparrow F$ with Window Partition

- Intuitive Steps:
 1. Calculate the possible confusable pairs of elements in $\Delta^w \times \Delta^w$ by considering current estimation of $\Omega^{\uparrow F}$ and feasibility requirement.
 2. Using these possible confusable pairs, remove the sensor activations that cause a violation of feasibility.
 3. Iterate above steps. Stop iteration when no more confusable pair can be found and no more sensor activation should be removed.

- Polynomial in the cardinality of Δ^w.
Example 1: Algorithm MAIN

- $E_{o,1} = \{a, b, d\}$, $E_{o,2} = \{a, c, d\}$, and $E_f = \{f\}$
- For simplicity, $n = 1$ in Window Partition \Rightarrow transition-based
- $[-]$: deactivated transition (unobservable); (\cdot): activated (observable)

\[\begin{align*}
E_{o,1} &= \{a, b, d\}, \quad E_{o,2} = \{a, c, d\}, \quad \text{and} \quad E_f = \{f\} \\
\text{For simplicity,} \quad n = 1 \quad \text{in Window Partition} \quad \Rightarrow \quad \text{transition-based} \\
[-] &:\text{ deactivated transition (unobservable); } (\cdot) : \text{ activated (observable)}
\end{align*} \]

![Diagram](attachment:diagram.png)

Figure: (a) For Diagnoser 1; (b) For Diagnoser 2
Example 2: Effect of Window Partition Refinement

- Two-agent system: $E_{o,1} = \{b, c, d\}$, $E_{o,2} = \{a, d\}$, and $E_f = \{f\}$
- An $\bar{\Omega}^*$ is $\Omega^*_1 = \{(0, c), (3, d), (4, d)\}$ and $\Omega^*_2 = \{(0, a), (3, d), (4, d)\}$
- Refining window partition ($n = 2$), the policy $\bar{\Omega}$ equivalent to $\bar{\Omega}^*$ is $\Omega_1 = \{\{c\}, (f, 3, d), (d, 3, d), (b, 4, d), (e, 4, d)\}$ and $\Omega_2 = \{\{a\}, (f, 3, d), (d, 3, d), (b, 4, d), (e, 4, d)\}$
- Running Algorithm MAIN starting with this $\bar{\Omega}$, we get the “improved” solution: $\Omega^*_1 = \{\{c\}, (f, 3, d), (b, 4, d)\}$ and $\Omega^*_2 = \{\{a\}, (f, 3, d), (b, 4, d)\}$

Figure: G
We formulated the problem of dynamic information acquisition in the context of distributed event diagnosis.

Feasibility implies monotonicity

Algorithms were developed for the optimization of information acquisition policies that preserve codiagnosability.

Minimal solutions can be computed using the notion of “Maximum Feasible Subpolicy”

The window partition technique is used to balance the computational efforts and the quality of the solution.

Algorithm for $\uparrow F$

For a fixed number of agents, the algorithms are of polynomial complexity in the size of the window partition.

From diagnosis to control...
√ Introduction: Dynamic Observations and Sensor Activation
√ Problem 1: Optimizing Information Acquisition in Distributed Event Diagnosis
● Problem 2: Transformation of Coobservability to Codiagnosability

Reference:
Results submitted for publication. Please contact the authors.
Decentralized Supervisory Control

Figure: Decentralized Supervisory Control
A prefix-closed language $K = \mathcal{L}(H) \subseteq \mathcal{L}(G)$ is coobservable with respect to $\mathcal{L}(G)$, ω_i, and $E_{c,i}$, $i \in \mathcal{A}$, if for all $s \in K$ and $e \in E_c$ with $se \in \mathcal{L}(G)$, the existence of $s_ie \in K$ with $\theta_i(s_i) = \theta_i(s)$ for all $i \in \mathcal{A}^c(e)$ implies that $se \in K$, where θ_i is the information mapping for supervisor i corresponding to ω_i.

In words, under information mapping θ_i, $i \in \mathcal{A}$, $\mathcal{L}(H)$ coobservable with respect to $\mathcal{L}(G)$ means the following:

if an occurrence of e after $s \in \mathcal{L}(H)$ is possible but illegal, then there must exist an agent that can safely disable e, i.e., if a legal s_i is followed by e and looks the same as s for that agent, then $s_i e$ must also be illegal
Context

- Previously: Coobservability and Codiagnosability have been investigated separately
- Our objective: To apply solutions developed for diagnosis problems (codiagnosability) for solving control problems (coobservability)
- Contribution: We show that a given problem of coobservability is reducible to a problem of codiagnosability
We have considered the notions of codiagnosability and coobservability in the general scenario of dynamic observations.

We have presented a polynomial algorithm to transform the problem of coobservability to the problem of codiagnosability.

This enables us to leverage the large literature available for codiagnosability to solve problems of coobservability.
Conclusion

- Many different formulations of the Dynamic Information Acquisition Problem
 - Solution spaces vary; notions of LBP and WBP
 - Look for “structure”; existence of $\uparrow F$
 - “Information State”
 - Quantitative approaches
 - Computational efficiency is a must
- Cross-fertilization diagnosis – control
 - Does there exist a mapping from codiagnosability to coobservability?
- From IAP to communicating agents...