PhD Seminar Course on

Latent Force Models with Gaussian Processes

Cagliari, 13 July 2009



Instructor: Prof. Neil Lawrence
senior lecturer at the School of Computer Science of the University of Manchester (http://www.cs.man.ac.uk/~neill/)
Duration: 1 hour
Schedule: 13 July 2009
Venue: Mocci Classroom
Topics: We are used to dealing with the situation where we have a latent variable. Often we assume this latent variable to be independently drawn from a distribution, e.g. probabilistic PCA or factor analysis. This simplification is often extended for temporal data where tractable Markovian independence assumptions are used (e.g. Kalman filters or hidden Markov models). In this talk we will consider the more general case where the latent variable is a forcing function in a differential equation model. We will firstly give a brief introduction to Gaussian processes, then we will show how for some simple ordinary differential equations the latent variable can be dealt with analytically for particular Gaussian process priors over the latent force. In this talk we will introduce the general framework, present results in systems biology and motion capture.hed in 2010.
Organizer: Ing. Giorgio Fumera
Dep. of Electrical and Electronic Engineering
University of Cagliari, Italy
Email: fumera@diee.unica.it